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Numerical Computation of Quantum Capacity3

Masanori Ohya,1 DeÂnes Petz,2 and Noboru Watanabe1

Received July 4, 1997

Quantum capacity is an important tool to analyse the performance of information
transmission for quantum channels. In this paper, the quantum capacities of the
attenuation channel for PSK and OOK are discussed.

1. INTRODUCTION

In the development of quantum information theory, the concept of chan-

nels has played an important role. In particular, an attenuation channel has

received much attention in optical communication. Information is expressed

by a quantum state, and we are interested in how much information carried

by the state is correctly transmitted to a receiver. This amount of transmitted

information from an input to an output through the quantum channel is
expressed by the quantum mutual entropy introduced in Ohya (1983). Based

on the quantum mutual entropy, the quantum capacity for a quantum channel

was studied in Ohya et al. (n.d.), which is a tool measuring the ability for

information transmission of a quantum channel.

In this paper, we compute the quantum capacity of an attenuation channel
with two fixed modulations, OOK (On±Off±Keying) and PSK (Phase±Shift±

Keying), under certain energy constraint and discuss the efficiency of informa-

tion transmission of OOK and PSK.

2. QUANTUM CHANNEL, MUTUAL ENTROPY, AND
CAPACITY

Let *1 (resp. _1) and *2 (resp. _2) be the Hilbert spaces of input (resp.

noise) and output (resp. loss) systems, let B (*j) [resp. B (_j)] be the set of
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all bounded operators on *j (resp. _j) and S(*j) [resp. S(_j)] be the set

of all density operators on *j (resp. _j) ( j 5 1, 2). A quantum channel L *

is a mapping from S(*1) to S(*2). The attenuation channel L * (Ohya,
1983) is defined by

L *( r ) 5 tr_2V( r ^ | 0 & ^ 0 | )V*, " r P S(*1)

where | 0 & ^ 0 | is the vacuum noise state in S(_1), tr_2 is the partial trace with

respect to _2, and V is the mapping from *1 ^ _1 to *2 ^ _2 given by

V ( | n & ^ | 0 & ) 5 o
n

j 5 0 !
n!

j!(n 2 j )!
h j(1 2 h )n 2 j | j & ^ | n 2 j &

for any photon number state vector | n & P *1 with a transmission rate h .

The quantum mutual entropy was introduced in Ohya (1983) such that

I ( r ; L *) 5 sup H o n l n(tr L *En(log L *En 2 log L * r )); r 5 o
n

l nEn J
where the supremum is taken over all von Neumann±Schatten decompositions

(Schatten, 1970) S n l n En of r . Using the quantum mutual entropy, the

quantum capacity for a quantum channel L * with respect to the subset 6 of

the state space S (*1) was defined in Ohya et al. (1997) as

C 6
q ( L *) 5 sup{I ( r ; L *); r P 6}

3. NUMERICAL COMPUTATION OF QUANTUM CAPACITY

In order to compute the quantum capacity, we have a useful proposition.

Proposition 1. For any input state r 5 l | x & ^ x | 1 1(1 2 l ) | y & ^ y | with

nonorthogonal normal vectors x, y P *1, the von Neumann±Schatten decom-

position of r is uniquely written

r 5 | r |E x,y
0 1 (1 2 | r |)E x,y

1

where E x,y
j 5 | e x,y

j & ^ e x,y
j | P S (*1) with | e x,y

j & 5 aj | x & 1 bj | y & ( j 5 0, 1).

The above | r | is given by

| r | 5
1

2 1 1 1 ! 1 2 4 l (1 2 l )(1 2 | ^ x, y & | 2) 2
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and the constants aj , bj are determined by

| aj | 2 5
( t x,y

j )2

( t x,y
j )2 1 2 | ^ x, y & | t x,y

j 1 1

| bj | 2 5
1

( t x,y
j )2 1 2 | ^ x, y & | t x,y

j 1 1

ajbj 5 ajbj 5
t x,y

j

( t x,y
j )2 1 2 | ^ x, y & | t x,y

j 1 1

t x,y
1 5 2

1 1 | ^ x, y & | t x,y
0

t x,y
0 1 | ^ x, y & |

t x,y
0 5

2 (1 2 2 l ) 1 ! 1 2 4 l (1 2 l )(1 2 | ^ x, y & | 2))
2(1 2 l ) | ^ x, y & |

From the above proposition and Lemma 3 in Ohya (1983), the quantum

mutual entropy with respect to the input states r and the attenuation channel

L * is calculated as

I ( r ; L *) 5 S ( L * r ) 2 | r |S ( L *E x,y
0 ) 2 (1 2 | r |)S ( L *E x,y

i )

where S ( L * r ) is the von Neumann entropy (Ohya and Petz, 1993) of the

output state L * r .

Let 6PSK and 6OOK be the subsets of S(*1) given by

6PSK 5 { r 5 l | u & ^ u | 1 (1 2 l ) | 2 u & ^ 2 u | ; l P [0, 1], u P C }

6OOK 5 { r 5 l | 0 & ^ 0 | 1 (1 2 l ) | u & ^ u | ; l P [0, 1], u P C }

where | u & ^ u | and | 2 u & ^ 2 u | are coherent states in S(*1). The quantum
capacities of the attenuation channel L * with respect to the above two sets

are computed under an energy constraint | u | 2 # t for any t $ 0:

C M
q ( L *)i 5 sup{I ( r ; L *); r P 6M, | u | 2 # t}

where M represents PSK or OOK. We obtain the following result.

Theorem 2. (1) For r 5 l | u & ^ u | 1 (1 2 l ) | 2 u & ^ 2 u | , S ( L * r ) (i.e.,

| x & 5 | u & , | y & 5 | 2 u & in Proposition 1), S ( L *E u , 2 u
0 ), and S ( L *E u , 2 u

1 ) are

S ( L * r ) 5 2 o
1

i 5 0

n i log n i, S ( L *E u , 2 u
j ) 5 2 o

1

i 5 0

m Ä ji, log m Ä ji

n i 5
1

2 1 1 1 ( 2 1) ! 1 2 4 l (1 2 l )([1 2 exp( 2 4 | u h | 2)] 2
m Ä ji 5

1

2 1 1 1 ( 2 1)i ! 1 2 4 m j (1 2 m j)(1 2 | j j | 2) 2
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where u h 5 ! h u and

j j 5
( t u , 2 u

j )2 2 1

! (( t u , 2 u
j )2 1 1)2 2 4 exp( 2 4 | u h | 2)( t u , 2 u

j )2
( j 5 0, 1)

m j 5
1

2 1 1 1
exp( 2 2 | u | 2)

exp( 2 2 h | u | 2) 2 ( t u , 2 u
j )2 1 2 exp( 2 2 h | u h | 2) t u , 2 u

j 1 1

( t u , 2 u
j )2 1 exp( 2 2 | u | 2) t u , 2 u

j 1 1

( j 5 0, 1)

(2) For r 5 l | 0 & ^ 0 | 1 (1 2 l ) | u & ^ u | , S ( L * r ) (i.e., | x & 5 | 0 & , | y & 5
| u & in Proposition 1), S ( L *E 0, u

0 ), and S ( L *E 0, u
1 ) are

S ( L * r ) 5 2 o
1

i 5 0

n i log n i, S ( L *E 0,0
j ) 5 2 o

1

i 5 0

m Ä ji, log m Ä ji

n i 5
1

2 1 1 1 ( 2 1)i ! 1 2 4 l (1 2 l )[1 2 exp( 2 | u h | 2)] 2
m Ä ji 5

1

2 1 1 1 ( 2 1)i ! 1 2 4 m j (1 2 m j)(1 2 | j j | 2) 2
where

j j 5
( t 0, u

j )2 2 1

! (( t 0, u
j )2 1 1)2 2 4 exp( 2 | u h | 2)( t 0, u

j )2
( j 5 0, 1)

m j 5
1

2 1 1 1
exp( 2 1±2 | u | 2)

exp( 2 1±2 h | u | 2) 2 ( t 0, u
j )2 1 2 exp( 2 1±2 h | u h | 2) t 0, u

j 1 1

( t 0, u
j )2 1 exp( 2 1±2 | u | 2) t 0, u

j 1 1

( j 5 0, 1).

(3) For any t $ 0, we have

C OOK
q ( L *)i # C PSK

q ( L *)t
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